Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
1.
Virol Sin ; 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38599520

RESUMEN

Infectious diseases caused by arboviruses are a public health concern in Pakistan. However, the studies on data prevalence and threats posed by arboviruses are limited. This study investigated the seroprevalence of arboviruses in a healthy population in Pakistan, including severe fever with thrombocytopenia syndrome virus (SFTSV), Crimean-Congo hemorrhagic fever virus (CCHFV), Tamdy virus (TAMV), and Karshi virus (KSIV) based on a newly established luciferase immunoprecipitation system (LIPS) assays, and Zika virus (ZIKV) by enzyme-linked immunosorbent assays (ELISA). Neutralizing activities against these arboviruses were further examined from the antibody positive samples. The results showed that the seroprevalence of SFTSV, CCHFV, TAMV, KSIV, and ZIKV was 17.37%, 7.58%, 4.41%, 1.10%, and 6.48%, respectively, and neutralizing to SFTSV (1.79%), CCHFV (2.62%), and ZIKV (0.69%) were identified, as well as to the SFTSV-related Guertu virus (GTV, 0.83%). Risk factors associated with the incidence of exposure and levels of antibody response were analyzed. Moreover, co-exposure to different arboviruses was demonstrated, as thirty-seven individuals were having antibodies against multiple viruses and thirteen showed neutralizing activity. Males, individuals aged ≤40 years, and outdoor workers had high risk of exposure to arboviruses. All these results reveal the substantial risks of infection with arboviruses in Pakistan, and indicate the threat from co-exposure to multiple arboviruses. The findings raise the need for further epidemiologic investigation in expanded regions and populations and the necessity to improve health surveillance in Pakistan.

2.
Org Biomol Chem ; 22(18): 3708-3724, 2024 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-38639206

RESUMEN

Despite the high global prevalence, rheumatoid arthritis lacks a satisfactory treatment. Hence, the present study is undertaken to design and synthesize novel anti-inflammatory compounds. For this, quinoline and anthranilic acid, two medicinally-privileged moieties, were linked by pharmacophore hybridization, and following their computational assessments, three hybrids 5a-c were synthesized in good over all yields. The in vitro and in vivo anti-inflammatory potential of these hybrids was determined by anti-denaturation and anti-proteinase, and carrageenan-induced paw edema models. The computational studies of these hybrids revealed their drug-likeness, optimum pharmacokinetics, and less toxicity. Moreover, they demonstrated high binding affinity (-9.4 to -10.6 kcal mol-1) and suitable binding interactions for TNF-α, FLAP, and COX-II. A three-step synthetic route resulted in the hybrids 5a-c with 83-86% yield of final step. At 50 µg mL-1, the antiprotease and anti-denaturation activity of compound 5b was significantly higher than 5a and 5c. Furthermore, 5b significantly reduced the edema in the right paw of the rats that received carrageenan. The results of this study indicate the medicinal worth of the novel hybrids in treating inflammatory disorders such as rheumatoid arthritis.


Asunto(s)
Diseño de Fármacos , Edema , Simulación del Acoplamiento Molecular , Quinolinas , ortoaminobenzoatos , Quinolinas/química , Quinolinas/farmacología , Quinolinas/síntesis química , Animales , Edema/tratamiento farmacológico , Edema/inducido químicamente , ortoaminobenzoatos/química , ortoaminobenzoatos/farmacología , ortoaminobenzoatos/síntesis química , Ratas , Carragenina , Masculino , Antiinflamatorios/farmacología , Antiinflamatorios/química , Antiinflamatorios/síntesis química , Estructura Molecular , Ratas Wistar , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/síntesis química , Relación Dosis-Respuesta a Droga , Relación Estructura-Actividad , Ciclooxigenasa 2/metabolismo , Ciclooxigenasa 2/química
3.
Int J Biol Macromol ; 263(Pt 1): 130160, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38367777

RESUMEN

The purpose of this study was to produce hyaluronic acid customized nanoparticles with chitosan for the delivery of chebulinic acid (CLA) to enhance its anticancer potential against breast cancer. A significant portion of CLA was encapsulated (89.72 ± 4.38 %) and loaded (43.15 ± 5.61 %) within hybrid nanoparticles. The colloidal hybrid nanoparticles demonstrated a polydispersity index (PDI) of about 0.379 ± 0.112, with zeta capacitance of 32.69 ± 5.12 (mV), and an average size of 115 ± 8 (nm). It was found that CLA-CT-HA-NPs had stronger anticancer effects on MCF-7 cells (IC50 = 8.18 ± 3.02 µM) than pure CLA (IC50 = 17.15 ± 5.11 µM). The initial cytotoxicity findings were supported by additional investigations based on comet assay and flow cytometry analysis. Tumor remission and survival were evaluated in five separate groups of mice. When juxtaposed with pure CLA (3.17 ± 0.419 %), CLA-CT-HA-NPs improved survival rates and reduced tumor burden by 3.76 ± 0.811(%). Furthermore, in-silico molecular docking investigations revealed that various biodegradable polymers had several levels of compatibility with CLA. The outcomes of this study might potentially served as an effective strategy for delivering drugs in the context of breast cancer therapy.


Asunto(s)
Quitosano , Taninos Hidrolizables , Nanopartículas , Neoplasias , Animales , Ratones , Ácido Hialurónico , Simulación del Acoplamiento Molecular , Sistemas de Liberación de Medicamentos
4.
Pathol Res Pract ; 255: 155179, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38320439

RESUMEN

Prostate cancer (PCa) continues to be a major health concern worldwide, with its resistance to chemotherapy and radiation therapy presenting major hurdles in successful treatment. While patients with localized prostate cancer generally have a good survival rate, those with metastatic prostate cancer often face a grim prognosis, even with aggressive treatments using various methods. The high mortality rate in severe cases is largely due to the lack of treatment options that can offer lasting results, especially considering the significant genetic diversity found in tumors at the genomic level. This comprehensive review examines the intricate molecular mechanisms governing resistance in PCa, emphasising the pivotal contributions of non-coding RNAs (ncRNAs). We delve into the diverse roles of microRNAs, long ncRNAs, and other non-coding elements as critical regulators of key cellular processes involved in CR & RR. The review emphasizes the diagnostic potential of ncRNAs as predictive biomarkers for treatment response, offering insights into patient stratification and personalized therapeutic approaches. Additionally, we explore the therapeutic implications of targeting ncRNAs to overcome CR & RR, highlighting innovative strategies to restore treatment sensitivity. By synthesizing current knowledge, this review not only provides a comprehension of the chemical basis of resistance in PCa but also identifies gaps in knowledge, paving the way for future research directions. Ultimately, this exploration of ncRNA perspectives offers a roadmap for advancing precision medicine in PCa, potentially transforming therapeutic paradigms and improving outcomes for patients facing the challenges of treatment resistance.


Asunto(s)
MicroARNs , Neoplasias de la Próstata , ARN Largo no Codificante , Masculino , Humanos , Resistencia a Antineoplásicos/genética , ARN no Traducido/genética , MicroARNs/genética , ARN Largo no Codificante/genética , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/diagnóstico
5.
J Biomol Struct Dyn ; : 1-14, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38213287

RESUMEN

The trypanothione reductase enzyme, which neutralizes the reactive oxygen species produced inside the macrophages to kill the parasites, is one of the evasion strategies Leishmania uses to survive inside the cells. The vitality of the parasite depends on Leishmania major trypanothione reductase (LmTr), a NADPH-dependent flavoprotein oxidoreductase essential for thiol metabolism. Since this enzyme is distinct and lacking in humans, we focused on it in our study to screen for new inhibitors to combat leishmaniasis. Using the I-TASSER server, a three-dimensional model of LmTr was generated. The Autodock vina program was used in high-throughput virtual screening of the ZINC database. The top seven molecules were ranked according to their binding affinity. The compounds with the highest binding affinities and the right number of hydrogen bonds were chosen. These compounds may be effective at inhibiting the target enzyme's (LmTr) activity, making them new leishmaniasis treatments. These compounds may serve as a useful starting point for a hit-to-lead approach in the quest for new anti-Leishmania drugs that are more efficient and less cytotoxic. The average node degree is 5.09, the average local clustering coefficient is 0.868, and the PPI enrichment p-value is 8.9e-06, indicating that it is sufficiently connected to regulate the network. TRYR (LmTr protein) also interacts physically with ten additional proteins in the pathogenesis network. The findings of the study indicated that successfully suppressing the LmTr protein in vitro and in vivo may finally result in regulating the L. major pathogenesis.Communicated by Ramaswamy H. Sarma.

6.
Artículo en Inglés | MEDLINE | ID: mdl-38165591

RESUMEN

The study aimed to evaluate the potential of piperidine-based 2H chromen-2-one derivatives against targeted enzymes, i.e., cholinesterase's and monoamine oxidase enzymes. The compounds were divided into three groups, i.e., 4a-m ((3,4-dimethyl-7-((1-methylpiperidin-4-yl)oxy)-2H-chromen-2-one derivatives), 5a-e (3,4-dimethyl-7-((1-methypipridin-3-yl)methoxy)-2H-chromen-2-one derivatives), and 7a-b (7-(3-(3,4-dihydroisoquinolin-2(1H)-yl)propoxy)-3,4-dimethyl-2H-chromen-2-one derivatives) with slight difference in the basic structure. The comprehensive computational investigations were conducted including density functional theories studies (DFTs), 2D-QSAR studies, molecular docking, and molecular dynamics simulations. The QSAR equation revealed that the activity of selected chromen-2-one-based piperidine derivatives is being affected by the six descriptors, i.e., Nitrogens Count, SdssCcount, SssOE-Index, T-2-2-7, ChiV6chain, and SssCH2E-Index. These descriptor values were further used for the preparation of chromen-2-one based piperidine derivatives. Based on this, 83 new derivatives were created from 7 selected parent compounds. The QSAR model predicted their IC50 values, with compound 4 k and 4kk as the most potent multi-targeted derivative. Molecular docking results exhibited these compounds as the best inhibitors; however, 4kk exhibited greater activity than the parent compounds. The results were further validated by molecular dynamic simulation studies along with the suitable physicochemical properties. These results prove to be an essential guide for the further design and development of new piperidine based chromen-2-one derivatives having better activity against neurodegenerative disorder.

7.
Int J Biol Macromol ; 254(Pt 3): 127975, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37944715

RESUMEN

The discovery of effective therapeutic approaches with minimum side effects and their tendency to completely eradicate the disease is the main challenge in the history of cancer treatment. Fenugreek (FGK) seeds are a rich source of phytochemicals, especially Diosgenin (DGN), which shows outstanding anticancer activities. In the present study, chitosan-silver nanoparticles (ChAgNPs) containing Diosgenin (DGN-ChAgNPs) were synthesized and evaluated for their anticancer activity against breast cancer cell line (MCF-7). For the physical characterization, the hydrodynamic diameter and zeta potential of DGN-ChAgNPs were determined to be 160.4 ± 12 nm and +37.19 ± 5.02 mV, respectively. Transmission electron microscopy (TEM) showed that nanoparticles shape was mostly round with smooth edges. Moreover, DGN was efficiently entrapped in nanoformulation with good entrapment efficacy (EE) of ~88 ± 4 %. The in vitro anti-proliferative activity of DGN-ChAgNPs was performed by sulforhodamine B (SRB) assay with promising inhibitory concentration of 6.902 ± 2.79 µg/mL. DAPI staining, comet assay and flow cytometry were performed to validate the anticancer potential of DGN-ChAgNPs both qualitatively and quantitatively. The percentage of survival rate and tumor reduction weight was evaluated in vivo in different groups of mice. Cisplatin was used as a standard anticancer drug. The DGN-ChAgNPs (12.5 mg/kg) treated group revealed higher percentage of survival rate and tumor reduction weight as compared to pure DGN treated group. These findings suggest that DGN-ChAgNPs could be developed as potential treatment therapy for breast cancer.


Asunto(s)
Antineoplásicos , Quitosano , Diosgenina , Nanopartículas del Metal , Nanopartículas , Animales , Ratones , Quitosano/química , Plata , Diosgenina/farmacología , Diosgenina/química , Antineoplásicos/farmacología , Antineoplásicos/química , Nanopartículas/química
8.
J Cosmet Dermatol ; 23(3): 1045-1054, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38050657

RESUMEN

OBJECTIVE: The current study aimed to provide preliminary insights into potential biopharmaceutical applications of Carica papaya seed extract by evaluating its phytochemical and biological profiles. Furthermore, the study aimed to develop a stable oil-in-water (O/W) emulsion for the effective delivery of antioxidant-rich biologicals for cosmetic purposes. METHODS: The hydroethanolic (ethanol 80%: 20% water) extract of C. papaya seeds was prepared via maceration technique. The chemical composition was carried out through preliminary phytochemical screening and estimation of total phenolic contents (TPC) and total flavonoid contents (TFC). The biological profile of the extract was explored using various in-vitro antioxidant methods. The homogenization procedure was used to create a cream of O/W and various tests were applied to assess the stability of the emulsion. By keeping the emulsion at different storage conditions (8 ± 0.5°C, 25 ± 0.5°C, 40 ± 0.5°C, and 40 ± 0.5°C ± 75% relative humidity [RH]) for a period of 28 days), the physical stability parameters of the emulsion, including pH, viscosity, centrifugation, phase separation, and conductivity, as well as rheological parameters and organoleptic parameters (odor, color, liquefaction, and creaming), were assessed. RESULTS: The preliminary phytochemical screening assay revealed the presence of various plant secondary metabolites including alkaloids, phenolics, flavonoids, tannins, saponins, and quinones. The extract was found to be rich in TPC and TFC. The in vitro antioxidant study gave maximum activity in the DPPH method. The plant extract containing cosmetic cream exhibited remarkable stability during the entire research. Data gathered indicated that no phase separation or liquefaction was seen after the experimental period. Throughout the experimental period, a small variation in the pH and conductivity values of the base and formulation was seen. CONCLUSION: The findings suggest that the seed extract of C. papaya is a rich source of polyphenols with antioxidant potential and can be a promising alternative for the treatment of various ailments. The stability of emulsion paves the way for its utilization as a carrier for the delivery of 3% C. papaya seed extract and applications in cosmetics products.


Asunto(s)
Productos Biológicos , Carica , Humanos , Antioxidantes , Emulsiones , Emolientes , Flavonoides , Fitoquímicos , Extractos Vegetales/farmacología , Agua
9.
Int J Pharm ; 649: 123635, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38000649

RESUMEN

Asialoglycoprotein receptors (ASGPRs) are highly expressed on hepatocytes and have been used for liver-targeted delivery and hepatocellular carcinoma (HCC) therapy. However, targeted delivery of bortezomib (BTZ) to HCC has not been reported. In this study, N-stearyl lactobionamide (N-SALB) with galactose (Gal) moiety was synthesized as a targeting agent and its structure was confirmed by FT-IR and NMR analyses. N-SALB surface-modified solid lipid nanoparticles (SLNs) loaded with BTZ (Gal-SLNs/BTZ) were developed to target BTZ delivery into HCC cancer cells. The Gal-SLNs/BTZ had an average particle size of 116.3 nm, polydispersity index (PDI) of 0.210, and zeta potential of -13.8 mV. TEM analysis showed their nanometer-sized spherical morphology. The encapsulation efficiency (EE) and drug loading (DL) capacity were 84.5 % and 1.16 %, respectively. Release studies showed that BTZ loaded inside the SLNs was slowly released over a period of 72 h at pH 7.4. Flow cytometry analysis showed significantly higher intracellular uptake of N-SALB-targeted nanoparticles than non-targeted nanoparticles in HepG2 cells. All lipid formulations showed good biocompatibility in the cytotoxicity study using MTT assay. Concentration-dependent cytotoxicity was observed for all formulations, with N-SALB-targeted nanoparticles demonstrating more cytotoxicity against HepG2 cells. The highest percentage of apoptosis was obtained for N-SALB-targeted nanoparticles compared to non-targeted nanoparticles (42.2 % and 8.70 %, respectively). Finally, biodistribution studies in HepG2 bearing nude mice showed that the accumulation of targeted nanoparticles in the tumor was significantly higher than non-targeted nanoparticles.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanopartículas , Ratones , Animales , Bortezomib , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Ratones Desnudos , Distribución Tisular , Espectroscopía Infrarroja por Transformada de Fourier , Neoplasias Hepáticas/tratamiento farmacológico , Nanopartículas/química , Tamaño de la Partícula , Portadores de Fármacos/uso terapéutico
10.
BMC Plant Biol ; 23(1): 648, 2023 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-38102555

RESUMEN

In the current industrial scenario, cadmium (Cd) as a metal is of great importance but poses a major threat to the ecosystem. However, the role of micronutrient - amino chelates such as iron - lysine (Fe - lys) in reducing Cr toxicity in crop plants was recently introduced. In the current experiment, the exogenous applications of Fe - lys i.e., 0 and10 mg L - 1, were examined, using an in vivo approach that involved plant growth and biomass, photosynthetic pigments, oxidative stress indicators and antioxidant response, sugar and osmolytes under the soil contaminated with varying levels of Cd i.e., 0, 50 and 100 µM using two different varieties of canola i.e., Sarbaz and Pea - 09. Results revealed that the increasing levels of Cd in the soil decreased plant growth and growth-related attributes and photosynthetic apparatus and also the soluble protein and soluble sugar. In contrast, the addition of different levels of Cd in the soil significantly increased the contents of malondialdehyde (MDA) and hydrogen peroxide (H2O2), which induced oxidative damage in both varieties of canola i.e., Sarbaz and Pea - 09. However, canola plants increased the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and non-enzymatic compounds such as phenolic, flavonoid, proline, and anthocyanin, which scavenge the over-production of reactive oxygen species (ROS). Cd toxicity can be overcome by the supplementation of Fe - lys, which significantly increased plant growth and biomass, improved photosynthetic machinery and sugar contents, and increased the activities of different antioxidative enzymes, even in the plants grown under different levels of Cd in the soil. Research findings, therefore, suggested that the Fe - lys application can ameliorate Cd toxicity in canola and result in improved plant growth and composition under metal stress.


Asunto(s)
Brassica napus , Contaminantes del Suelo , Cadmio/toxicidad , Cadmio/metabolismo , Brassica napus/metabolismo , Lisina/metabolismo , Hierro/metabolismo , Peróxido de Hidrógeno/metabolismo , Ecosistema , Antioxidantes/metabolismo , Estrés Oxidativo , Suelo/química , Azúcares/metabolismo , Contaminantes del Suelo/metabolismo
11.
PLoS One ; 18(12): e0292455, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38127898

RESUMEN

Cancer stands as a significant global cause of mortality, predominantly arising from the dysregulation of key enzymes and DNA. One strategic avenue in developing new anticancer agents involves targeting specific proteins within the cancer pathway. Amidst ongoing efforts to enhance the efficacy of anticancer drugs, a range of crucial medications currently interact with DNA at the molecular level, exerting profound biological effects. Our study is driven by the objective to comprehensively explore the potential of two compounds: (7S,9S)-7-[(2R,4S,5S,6S)-4-amino-5-hydroxy-6-methyloxan-2-yl]oxy-6,9,11-trihydroxy-9-(2-hydroxyacetyl)-4-methoxy-8,10-dihydro-7H-tetracene-5,12-dione (A01) and 5-fluoro-1H-pyrimidine-2,4-dione (A02). These compounds have demonstrated marked efficacy against breast and cervical cancer cell lines, positioning them as promising anticancer candidates. In our investigation, A01 has emerged as a particularly potent candidate, with its potential bolstered by corroborative evidence from lactate dehydrogenase release and caspase-3 activity assays. On the other hand, A02 has exhibited remarkable anticancer potential. To further elucidate their molecular mechanisms and interactions, we employed computational techniques, including molecular docking and molecular dynamics simulations. Notably, our computational analyses suggest that the A01-DNA complex predominantly interacts via the minor groove, imparting significant insights into its mechanism of action. While earlier studies have also highlighted the anticancer activity of A01, our research contributes by providing a deeper understanding of its binding mechanisms through computational investigations. This knowledge holds potential for designing more effective drugs that target cancer-associated proteins. These findings lay a robust groundwork for future inquiries and propose that derivatives of A01 could be synthesized as potent bioactive agents for cancer treatment. By elucidating the distinctive aspects of our study's outcomes, we address the concern of distinguishing our findings from those of prior research.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Caspasa 3 , Simulación del Acoplamiento Molecular , L-Lactato Deshidrogenasa , Antineoplásicos/farmacología , Antineoplásicos/química , Pirimidinas/farmacología , ADN , Relación Estructura-Actividad , Ensayos de Selección de Medicamentos Antitumorales , Estructura Molecular
12.
Protein J ; 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37940790

RESUMEN

AKR1B1 and AKR1B10 are important members of aldo-keto reductase family which plays a significant role in cancer progression by modulating cellular metabolism. These enzymes are involved in various metabolic processes, including the synthesis and metabolism of hormones, detoxification of reactive aldehydes, and the reduction of various endogenous and exogenous compounds. This study aimed to explore the potential of strychnine as an anticancer agent by targeting AKR1B1 and AKR1B10 via drug repurposing approach. To assess the drug-like properties of strychnine, a physiologically based pharmacokinetic (PKPB) model and High Throughput Pharmacokinetics (HTPK) approach were employed. The obtained results fell within the expected range for drug molecules, confirming its suitability for further investigation. Additionally, density functional theory (DFT) studies were conducted to gain insight into the electronic properties contributing to the drug molecule's reactivity. Building upon the promising DFT results, molecular docking analysis using the AutoDock tool was performed to examine the binding interactions between strychnine and the proposed targets, AKR1B1 and AKR1B10. Findings from the molecular docking studies suggested a higher probability of strychnine acting as an inhibitor of AKR1B1 and AKR1B10 with docking scores of - 30.84 and - 29.36 kJ/mol respectively. To validate the stability of the protein-ligand complex, Molecular Dynamic Simulation (MDS) studies were conducted, revealing the formation of a stable complex between the enzymes and strychnine. This comprehensive approach sheds light on the potential effectiveness of strychnine as a treatment for breast, lung, liver, and pancreatic cancers, as well as related malignancies. The novel insights gained from the physiologically based pharmacokinetic modeling, density functional theory, molecular docking, and molecular dynamics simulations collectively support the prospect of strychnine as a promising molecule for anticancer therapy. Further investigations are warranted to validate these findings and explore the therapeutic potential of strychnine in preclinical and clinical settings.

13.
J Pak Med Assoc ; 73(11): 2312-2313, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38013568
14.
Nanomedicine (Lond) ; 18(25): 1855-1873, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37991168

RESUMEN

Hepatocellular carcinoma (HCC) is the most common form of primary liver cancer, typically diagnosed in advanced stages. Chemotherapy is necessary for treating advanced liver cancer; however, several challenges affect its effectiveness. These challenges include low specificity, high dosage requirements, high systemic toxicity and severe side effects, which significantly limit the efficacy of chemotherapy. These limitations can hinder the treatment of HCC. This review focuses on the prevalence of HCC, different types of liver cancer and the staging of the disease, along with available treatment methods. Additionally, explores recent and relevant studies on smart drug- and gene-delivery systems specifically designed for HCC. These systems include targeted endogenous and exogenous stimuli-responsive platforms.


Liver cancer is the third leading cause of cancer deaths in the world that is usually diagnosed in the last stages. Chemotherapy is commonly used to treat advanced liver cancer, but it faces several challenges that reduce its effectiveness. These challenges include low specificity (not targeting cancer cells specifically), high dosage requirements and side effects that can affect anywhere in the body. As a result, the efficacy of chemotherapy is significantly limited, making it difficult to treat liver cancer. This review discusses the prevalence of liver cancer, different types of liver cancer and how the disease is staged. It also explores various treatment methods available for liver cancer. Furthermore, the article explores recent and relevant studies on smart drug- and gene-delivery systems that are specifically designed to target liver cancer. These systems include platforms that respond to targeted and internal or external stimuli. They aim to improve the effectiveness of treatment for liver cancer.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Terapia Molecular Dirigida , Técnicas de Transferencia de Gen
15.
Pharmaceutics ; 15(10)2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37896205

RESUMEN

The primary objective of this study was to assess the potential utility of quince seed mucilage as an excipient within a graft copolymer for the development of an oral-controlled drug delivery system. The Cydonia oblonga-mucilage-based graft copolymer was synthesized via a free radical polymerization method, employing potassium per sulfate (KPS) as the initiator and N, N-methylene bisacrylamide (MBA) as the crosslinker. Various concentrations of monomers, namely acrylic acid (AA) and methacrylic acid (MAA), were used in the graft copolymerization process. Metoprolol tartarate was then incorporated into this graft copolymer matrix, and the resultant drug delivery system was subjected to comprehensive characterization using techniques such as Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The swelling behavior of the drug delivery system was evaluated under different pH conditions, and in vitro drug release studies were conducted. Furthermore, pharmacokinetic parameters including the area under the curve (AUC), maximum plasma concentration (Cmax), time to reach Cmax (Tmax), and half-life (t1/2) were determined for metoprolol-loaded hydrogel formulations in rabbit plasma, and these results were compared with those obtained from a commercially available product. The key findings from the study include observations that higher concentrations of acrylic acid (AA) and Cydonia oblonga mucilage (CM) in the graft copolymer enhanced swelling, while the opposite trend was noted at elevated concentrations of methacrylic acid (MAA) and N, N-methylene bisacrylamide (MBA). FTIR analysis confirmed the formation of the graft copolymer and established the compatibility between the drug and the polymer. SEM imaging revealed a porous structure in the prepared formulations. Additionally, the swelling behavior and drug release profiles indicated a pH-sensitive pattern. The pharmacokinetic assessment revealed sustained release patterns of metoprolol from the hydrogel network system. Notably, the drug-loaded formulation exhibited a higher Cmax (156.48 ng/mL) compared to the marketed metoprolol product (96 ng/mL), and the AUC of the hydrogel-loaded metoprolol was 2.3 times greater than that of the marketed formulation. In conclusion, this study underscores the potential of quince seed mucilage as an intelligent material for graft-copolymer-based oral-controlled release drug delivery systems.

16.
J Pak Med Assoc ; 73(10): 2073-2076, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37876074

RESUMEN

To assess the effects of excessive screen time on the health of medical and dental students due to online teaching during the COVID-19 pandemic. It was a descriptive cross-sectional study, conducted in Bahria University of Health Sciences from June 2022 to September 2022 after getting ethical approval. A total of 200 students who attended online teaching modules for at least one year through online teaching Apps, were included. A structured questionnaire was distributed using google forms. The results revealed that factors including strain on the eyes, restlessness, declined academic performance and exercise during lockdown, along with feeling connected as a group had a significant association with increased screen time. Excessive screen time has various adverse effects on the physical and mental health of medical and dental students. For improving students' physical and mental health during online teaching we need to change teaching strategies and support the introduction of flipped classroom.


Asunto(s)
Salud Mental , Estudiantes de Medicina , Humanos , Estudios Transversales , Pandemias , Tiempo de Pantalla , Estudiantes de Odontología
17.
Molecules ; 28(17)2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37687143

RESUMEN

The traditional use of Mirabilis jalapa L. roots to enhance male sexual performance prompted us to assess the in silico, in vitro, and in vivo aphrodisiac activities of its hydroethanolic extract using normal male rats. Spectroscopic characterization indicated the presence of ß-D-glucopyranoside, methyl-1,9-benzyl-2,6-dichloro-9H-purine, and Bis-(2-ethylhexyl)-phthalate; these compounds have a significant inhibitory effect on the phosphodiesterase-5 (PDE-5) enzyme in silico evaluation and minerals (including zinc, cadmium, and magnesium). Other phytochemical analyses revealed the presence of phenolic compounds and flavonoids. These phytochemicals and minerals may contribute to the aphrodisiac activities of the extract. Additionally, the in vivo study revealed that the administration of M. jalapa root extract (300 mg/kg) significantly enhanced (p < 0.01, p < 0.03) mount, intromission, and ejaculation frequencies while significantly (p < 0.05) decreasing the mount and intromission latencies, as well as the post-ejaculatory interval time, in comparison with the standard drugs sildenafil and ginseng, resulting in enhanced erection and sexual performance in the rats. Furthermore, the extract significantly (p < 0.05) increased penile reflexes and also elevated the levels of testosterone and luteinizing hormones. Extract (300 mg/kg) significantly (p < 0.05) inhibited the PDE-5 enzyme in an in vitro study. Concludingly, the comprehensive findings of this study suggest that a standardized herbal extract derived from M. jalapa roots alleviates erectile dysfunction and premature ejaculation in male rats. M. jalapa root extract proved to be an alternative treatment for erectile dysfunction and premature ejaculation.


Asunto(s)
Afrodisíacos , Disfunción Eréctil , Mirabilis , Eyaculación Prematura , Masculino , Animales , Ratas , Humanos , Afrodisíacos/farmacología , Fitoquímicos/farmacología , Extractos Vegetales/farmacología
18.
Cancers (Basel) ; 15(18)2023 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-37760469

RESUMEN

The genesis of cancer is a precisely organized process in which normal cells undergo genetic alterations that cause the cells to multiply abnormally, colonize, and metastasize to other organs such as the liver, lungs, colon, and brain. Potential drugs that could modify these carcinogenic pathways are the ones that will be used in clinical trials as anti-cancer drugs. Resveratrol (RES) is a polyphenolic natural antitoxin that has been utilized for the treatment of several diseases, owing to its ability to scavenge free radicals, control the expression and activity of antioxidant enzymes, and have effects on inflammation, cancer, aging, diabetes, and cardioprotection. Although RES has a variety of pharmacological uses and shows promising applications in natural medicine, its unpredictable pharmacokinetics compromise its therapeutic efficacy and prevent its use in clinical settings. RES has been encapsulated into various nanocarriers, such as liposomes, polymeric nanoparticles, lipidic nanocarriers, and inorganic nanoparticles, to address these issues. These nanocarriers can modulate drug release, increase bioavailability, and reach therapeutically relevant plasma concentrations. Studies on resveratrol-rich nano-formulations in various cancer types are compiled in the current article. Studies relating to enhanced drug stability, increased therapeutic potential in terms of pharmacokinetics and pharmacodynamics, and reduced toxicity to cells and tissues are the main topics of this research. To keep the readers informed about the current state of resveratrol nano-formulations from an industrial perspective, some recent and significant patent literature has also been provided. Here, the prospects for nano-formulations are briefly discussed, along with machine learning and pharmacometrics methods for resolving resveratrol's pharmacokinetic concerns.

19.
Int J Mol Sci ; 24(18)2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37762089

RESUMEN

The consortium of microbes inhabiting the human body, together with their encoded genes and secreted metabolites, is referred to as the "human microbiome." Several studies have established a link between the composition of the microbiome and its impact on human health. This impact spans local gastrointestinal inflammation to systemic autoimmune disorders and neurodegenerative diseases such as Alzheimer's and Autism. Some of these links have been validated by rigorous experiments that identify specific strains as mediators or drivers of a particular condition. Consequently, the development of probiotics to compensate for a missing beneficial microbe(s) has advanced and become popular, especially in the treatment of irritable bowel diseases and to restore disrupted gut flora after antibiotic administration. The widespread use of probiotics is often advocated as a natural ecological therapy. However, this perception is not always accurate, as there is a potential for unexpected interactions when administering live microbial cultures. Here, we designed this research to explore the intricate interactions among probiotics, the host, and microbes through a series of experiments. Our objectives included assessing their immunomodulatory effects, response to oral medications, impact on microbial population dynamics, and mediation of antibiotic resistance. To achieve these goals, we employed diverse experimental protocols, including cell-based enzyme -linked immunosorbent assay (ELISA), antibiotic susceptibility testing, antimicrobial activity assays, computational prediction of probiotic genes responsible for antibiotic resistance, polymerase chain reaction (PCR)-based validation of predicted genes, and survival assays of probiotics in the presence of selected oral medications. Our findings highlight that more than half of the tested probiotics trigger an inflammatory response in the Caco-2 cell line, are influenced by oral medications, exhibit antibacterial activity, and possess genes encoding antimicrobial resistance. These results underscore the necessity for a reevaluation of probiotic usage and emphasize the importance of establishing regulations to govern probiotic testing, approval, and administration.


Asunto(s)
Microbioma Gastrointestinal , Humanos , Células CACO-2 , Farmacorresistencia Microbiana , Antibacterianos/farmacología , Inmunidad
20.
Pharmaceuticals (Basel) ; 16(9)2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37765028

RESUMEN

The potential of levosulpiride-loaded nanostructured lipid carriers (LSP-NLCs) for enhanced antidepressant and anxiolytic effects was evaluated in the current study. A forced swim test (FST) and tail suspension test (TST) were carried out to determine the antidepressant effect whereas anxiolytic activity was investigated using light-dark box and open field tests. Behavioral changes were evaluated in lipopolysaccharide-induced depressed animals. The access of LSP to the brain to produce therapeutic effects was estimated qualitatively by using fluorescently labeled LSP-NLCs. The distribution of LSP-NLCs was analyzed using ex vivo imaging of major organs after oral and intraperitoneal administration. Acute toxicity studies were carried out to assess the safety of LSP-NLCs in vivo. An improved antidepressant effect of LSP-NLCs on LPS-induced depression showed an increase in swimming time (237 ± 51 s) and struggling time (226 ± 15 s) with a reduction in floating (123 ± 51 s) and immobility time (134 ± 15 s) in FST and TST. The anxiolytic activity in the light-dark box and open field tests exhibited superiority over LSP dispersion. Near-infrared images of fluorescently labeled LSP-NLCs demonstrated the presence of coumarin dye in the brain after 1 h of administration. An acute toxicity study revealed no significant changes in organ-to-body weight ratio, serum biochemistry or tissue histology of major organs. It can be concluded that nanostructured lipid carriers can efficiently deliver LSP to the brain for improved therapeutic efficacy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...